A-LEVEL Mathematics

MM2B Mechanics 2B
Mark scheme

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk
Annotations key

Annotation	Use
$?$	Unclear
\wedge	Omission
BOD	Benefit of doubt
Cross	Incorrect
FT	Follow through
H wavy	Highlight relevant working
ISW	Ignore subsequent working
On page comment	Clarifies issue
SEEN	Only used on blank pages
Tick	Correct

Q	Solution	Mark	Total	Comment
1 (a)(i)	Total weight is 20 kg . Taking moments about y axis $\begin{aligned} & 7 \times 60+6 \times 20+3 \times 60+4 \times 80=20 x \\ & x=\frac{1040}{20} \\ & =52 \end{aligned}$ Distance from AD is 52 cm	B1 M1 A1	3	B1: Total weight CAO M1: At least three correct multiplications on LHS. A1: Correct distance CAO.
(ii)	Taking moments about x axis $\begin{aligned} & 7 \times 40+6 \times 60+3 \times 30+4 \times 20=20 y \\ & y=\frac{810}{20} \\ & =40.5 \end{aligned}$ Distance from AB is 40.5 cm	M1 A1	2	M1: At least three correct multiplications on LHS. A1: Correct distance CAO.
(b)	If lamina hangs in equilibrium , C of G must be vertically below X Hence distance of C of G from y axis is 60 cm . Moments about AD; $\begin{aligned} & 1040+m \times 120=(20+m) 60 \\ & 60 \mathrm{~m}=160 \end{aligned}$ Mass is $\frac{8}{3} \mathrm{~kg}$	M1A1 A1	4	M1: Uses 60 or other appropriate distance in their calculations. No need to see this explicitly stated. M1: At least two terms correct in a $3 / 4$ term moment equation correct. A1: Correct moment equation. A1: Correct mass. CAO Accept 2.67.
	Total		9	

\begin{tabular}{|c|c|c|c|c|}
\hline Q 3 \& Solution \& Mark \& Total \& Comment \\
\hline \begin{tabular}{l}
(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\mathbf{a} \& =\left(12-3 t^{2}\right) \mathbf{i}+12 e^{-2 t} \mathbf{j} \\
\mathbf{F} \& =\mathrm{ma} \\
\& =\left(24-6 t^{2}\right) \mathbf{i}+24 e^{-2 t} \mathbf{j}
\end{aligned}
\] \\
When \(\mathrm{t}=0, \mathbf{F}=24 \mathbf{i}+24 \mathbf{j}\) \\
Magnitude is \(\sqrt{24^{2}+24^{2}}\)
\[
=24 \sqrt{2} \text { or } 33.9
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 2

2

2 \& | M1: Either term correct. |
| :--- |
| A1: All correct |
| M1: Use of $F=m a$ |
| A1: Correct expression for force. |
| M1: Finding magnitude and substituting $t=0$. |
| A1: Correct magnitude. Do not only 34 . |

\hline (c) \& When \mathbf{F} acts north, \mathbf{i} component is zero

$$
\begin{gathered}
24-6 t^{2}=0 \\
t=2
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 2 \& | M1: Setting \mathbf{i} component equal to zero. |
| :--- |
| A1: Correct time. |

\hline (d) \& | $\begin{aligned} \mathbf{r} & =\int \boldsymbol{v} d t \\ & =\left(6 t^{2}-\frac{1}{4} \mathrm{t}^{4}\right) \boldsymbol{i}+3 e^{-2 t} \mathbf{j}+\boldsymbol{c} \end{aligned}$ |
| :--- |
| When $\mathrm{t}=0, \mathbf{r}=4 \mathbf{i}-2 \mathbf{j}, \therefore \boldsymbol{c}=4 \boldsymbol{i}-5 \boldsymbol{j}$ $\mathbf{r}=\left(6 t^{2}-\frac{1}{4} t^{4}+4\right) \boldsymbol{i}+\left(3 e^{-2 t}-5\right) \mathbf{j}$ | \& | M1A1 |
| :--- |
| m1A1 |
| A1 | \& 5 \& | M1: Either component correct. |
| :--- |
| A1: Both components correct. Condone missing \mathbf{c}. |
| m 1 : Must use $\mathrm{t}=0$. Either component of \mathbf{c} correct. |
| A1: Correct \mathbf{c}. |
| A1: Correct position vector. |

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

MARK SCHEME - A-LEVEL MATHEMATICS - MM2B - JUNE 2018

Q	Solution	Mark	Total	Comment
4 (a)	$\begin{aligned} & \text { Using } F=\frac{m v^{2}}{r} \\ & \begin{aligned} & F=\frac{900 \times 12^{2}}{80} \\ & \quad= 1620 \mathrm{~N} \end{aligned} \end{aligned}$	M1 A1	2	M1: Using $F=\frac{m v^{2}}{r}$ A1: Correct force.
(b)	$\begin{aligned} & \text { Using } F=\mu R \\ & 1620=\mu \times 900 g \\ & \mu=0.18367 . . \\ & \mu=0.184 \end{aligned}$	M1 A1	2	M1: Use of $F=\mu R$ Condone use of inequality. A1: Correct coefficient of friction.
	Total		4	

Q	Solution	Mark	Total	Comment
5(a)	$\begin{aligned} & \text { Power }=F \times v \\ & \begin{aligned} 32000 & =(k \times 40) \times 40 \\ & =1600 k \end{aligned} \\ & k=20 \end{aligned}$	M1 A1	2	M1: Use of $P=F v$ A1: Using an equation that leads to $k=20$. AG
(b)(i)	Accelerating forces $\begin{gathered} =600 g \times \frac{1}{10}-20 v \\ \rightarrow 600 \frac{d v}{d t}=60 g-20 v \\ \frac{d v}{d t}=\frac{g}{10}-\frac{v}{30} \\ \frac{d v}{d t}=\frac{3 g-v}{30} \end{gathered}$	M1 A1 A1	3	M1: Resolving to find component of weight in equation. Must see $\sin \theta$ or $\times \frac{1}{10}$. A1: Use of $F=m a$ A1: Correct answer from correct working. AG
(ii)	$\begin{aligned} & \int \frac{d v}{3 g-v}=\frac{1}{30} \int d t \\ & -\ln (3 g-v)=\frac{1}{30} t+c \\ & \text { When } t=0, v=18 \Rightarrow \mathrm{c}=-\ln (3 g-18) \\ & \frac{1}{30} t=\ln \frac{3 g-18}{3 g-v} \\ & t=30 \ln \frac{3 g-18}{3 g-v} \end{aligned}$	M1 A1A1 B1 A1	5	M1: Separation of variables. A1: Correct LHS. A1:Correct RHS. Condone missing constant. B1: Correct constant. (-2.4336 \ldots or AWRT -2.4 or $-\ln (11.4)$ or $e^{c}=\frac{5}{57}$) or $e^{-c}=\frac{57}{5}$ A1: Correct final answer. Accept $t=30 \ln \left(\frac{11.4}{3 g-v}\right)$ or $t=-30 \ln \left(\frac{3 g-v}{11.4}\right)$ or $t=30 \ln \left(\frac{57}{5(3 g-v)}\right) \mathrm{oe}$ Do not accept $t=73.008-30 \ln (3 g-v)$
(iii)	When $v=22 \Rightarrow t=30 \ln \frac{3 g-18}{3 g-22}$ When $v=18 t=0$ Time taken is $=30 \ln \frac{3 g-18}{3 g-22}$ $\begin{aligned} & =12.964 . . \mathrm{sec} \\ & =13.0 \mathrm{sec} \end{aligned}$	M1 B1 A1	3	M1: Substituting $v=22$ (must be a \log or exp term) B1: Using $v=18$ when $t=0$. PI A1: Correct time. Condone 13
	Total		13	

Q	Solution	Mark	Total	Comment
7(a)	EPE in $A C$ is zero. EPE in $B C$ is $\frac{240 \times 2^{2}}{6}$ $=160 \mathrm{~J}$ Total EPE is 160 J	B1 B1	2	B1: Zero EPE implied for one string. Must be stated. B1: Shows how to obtain 160. AG
(b)	$\begin{aligned} & \frac{1}{2} \times 8 v^{2}+\mathrm{EPE}[\text { of AC }]+\mathrm{EPE}[\mathrm{of} \mathrm{BC}] \\ & + \text { work done by friction }=160 \\ & \text { Work done by friction }=8 g \mu x \\ & \text { EPE of AC }=\frac{160 \times x^{2}}{4} \\ & \text { EPE of BC }=\frac{240 \times(2-x)^{2}}{6} \\ & 4 v^{2}+\frac{160 \times x^{2}}{4}+\frac{240 \times(2-x)^{2}}{6}+8 g \mu x=160 \\ & 4 v^{2}+40 x^{2}+40\left(4-4 x+x^{2}\right)+ \\ & 8 g \mu x=160 \\ & v^{2}=40 x-20 x^{2}-2 g \mu x \\ & \mathrm{v}=\left(40 x-20 x^{2}-2 g \mu x\right)^{0.5} \end{aligned}$	M1 B1 B1 A1 A1	5	M1: Energy equation with correct KE and including 160 and at least one EPE. B1: Correct friction term. B1: Both EPEs correct. A1: All terms correct with correct signs. A1: Correct expression for v.
(c)	Differentiation of any quadratic [wrt t or wrt $x\}$ $2 v \frac{d v}{d t}=\frac{d x}{d t}(40-40 x-2 \mathrm{~g} \mu)$ At max speed $40-40 x-2 g \mu=0$ $x=1-\frac{g \mu}{20}$ OR Max speed of v is when $x=-\frac{b}{2 a}$ $x=\frac{40-2 g \mu}{2 \times 20}=1-\frac{g \mu}{20}$ OR (using forces) $\begin{gathered} \frac{160 x}{2}+8 g \mu=\frac{240(2-x)}{3} \\ x=1-\frac{g \mu}{20} \end{gathered}$	M1 A1 (M1) (A1) (M1) (A1)		M1: Derivative equated to zero. A1: Correct expression. M1: Uses equal roots of a quadratic. A1: Correct expression. M1: Correct equation for zero resultant force. A1: Correct expression.
	Total	9	9	

Q	Solution	Mark	Total	Comment
$\mathbf{8} 8$				

